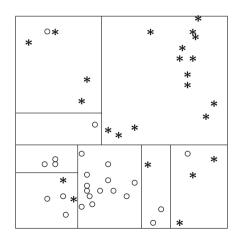
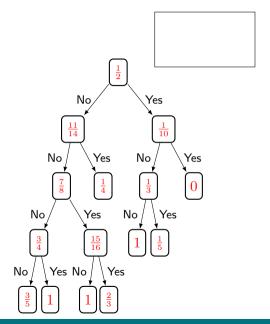
Decision and Regression trees

MATH-412 - Statistical Machine Learning

Decision tree





Decision/regression trees principle

- Is a local averaging method of the type histogram except that the partition $\Pi = \{R_1, \dots, R_d\}$ is build from the data.
- Tree predictors are of the form :

$$f_{\boldsymbol{w}}(\mathbf{x}) = \sum_{j=1}^{d} w_j \, 1_{\{\mathbf{x} \in R_j\}}$$

where the (hyper)-rectangular regions R_j are obtained by recursive partitioning of the space based on splits that place a threshold on a single variable at a time.

Entropy associated with a loss function

If ℓ is a loss function, we define the associated entropy for constant predictors as $H_{\ell}(Y) = \inf_{a \in \mathcal{A}} \mathbb{E}[\ell(a, Y)].$

Examples:

Regression. For
$$\ell(a,y)=(a-y)^2$$
, $H_{\ell}(Y)=\inf_{a\in\mathbb{R}}\mathbb{E}[(a-Y)^2]=\operatorname{Var}(Y)$

Binary Classification. For $Y \sim Ber(p)$,

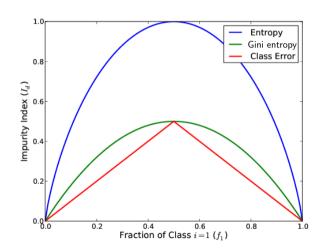
- if $\ell(a,y)=(a-y)^2$, then $H_{\ell}(Y)=\operatorname{Var}(Y)=p(1-p)$ is the Gini entropy
- ullet if $\ell(a,y) = -ig[y \log a + (1-y) \log (1-a)ig]$, then we get the <code>Shannon entropy</code>

$$H_{\ell}(Y) = \min_{a \in [0,1]} -\mathbb{E}[Y \log a + (1-Y) \log(1-a)] = -p \log p - (1-p) \log(1-p)$$

• if $\ell(a,y) = 1_{\{a \neq y\}}$ then $H_{\ell}(Y) = \min_{a \in \{0,1\}} \mathbb{P}(Y \neq a) = \min_{a \in \{0,1\}} a(1-p) + (1-a)p$ so that $H_{\ell}(Y) = \min(p, (1-p))$ is the (oracle) misclassification error

These entropies are called impurity measures because $H_{\ell}(Y) \to 0$ when $p \to 0$ or $p \to 1$.

Impurity measures for binary classification



$$\begin{split} h_G(p) &= p(1-p) \\ h_S(p) &= -p \log p - (1-p) \log (1-p) \\ h_{0\text{-}1}(p) &= \min \left(p, (1-p) \right) \end{split}$$

Empirical impurity measures

The same impurity measures can be defined in an empirical setting

For least square *regression*, we have $\hat{\sigma}^2 = \min_a \frac{1}{n} \sum_i (y_i - a)^2$

For binary classification, $\hat{p} = \frac{1}{n} \sum_{i} y_{i}$.

We can define the Gini, Shannon and 0-1 entropies as :

$$\begin{split} h_G(\hat{p}) &= \hat{p}(1-\hat{p}) = \min_a \frac{1}{n} \sum_i (y_i - a)^2 \\ h_S(\hat{p}) &= -\hat{p} \log \hat{p} - (1-\hat{p}) \log (1-\hat{p}) = \min_a \frac{1}{n} \sum_i y_i \log a + (1-y_i) \log (1-a) \\ h_{0\text{-}1}(\hat{p}) &= \min \left(\hat{p}, (1-\hat{p}) \right) = \min_a \frac{1}{n} \sum_i 1_{\{y_i \neq a\}} \end{split}$$

We denote generically

$$h_\ell(\hat{p}) = \min_a \tfrac{1}{n} \textstyle \sum_i \ell(y_i, a) \qquad \text{for} \quad h_\ell \in \big\{h_G, h_S, h_{\text{0--}1}\big\}.$$

ERM on histograms in terms of the impurity measures

Let

$$ullet$$
 $\Pi=\{R_1,\ldots,R_d\}$ and

•
$$\mathcal{F}_\Pi=\left\{f_{m w}\mid f_{m w}(x)=\sum_{j=1}^d w_j\, 1_{\{x\in R_j\}}
ight\}$$
 the histogram functions on Π

$$\forall f_{\boldsymbol{w}} \in \mathcal{F}_{\Pi}, \qquad \widehat{\mathcal{R}}_n(f_{\boldsymbol{w}}) = \frac{1}{n} \sum_{j=1}^d \sum_{i: x_i \in R_j} \ell(w_j, y_i)$$

$$\min_{f \in \mathcal{F}_{\Pi}} \widehat{\mathcal{R}}_n(f) = \frac{1}{n} \sum_{j=1}^d \min_{w_j} \sum_{i: x_i \in R_j} \ell(w_j, y_i) = \frac{1}{n} \sum_{j=1}^d n_j \, h_\ell(\hat{p}_j)$$

with $n_j = \sum_i 1_{\{x_i \in R_j\}}$ and $\hat{p}_j = \frac{1}{n_j} \sum_i y_i 1_{\{x_i \in R_j\}}$.

Impurity decrease via a split

- let $\Pi = \{R_1, \dots, R_{d-2}, \frac{R_{d-1}}{R_d}, R_d\}$
- and $\Pi_{-} = \{R_1, \dots, R_{d-2}, R_{\cup}\}$ with $R_{\cup} = R_{d-1} \cup R_d$
- \rightarrow so that Π is obtained from Π_- by splitting R_{\cup} into R_{d-1} and R_d
- let $\mathcal{F}_{\Pi} = \left\{ f_{\boldsymbol{w}} \mid f_{\boldsymbol{w}}(x) = \sum_{j=1}^d w_j \, 1_{\{x \in R_j\}} \right\}$ as before, and \mathcal{F}_{Π_-} similarly.
- let $n_j = \sum_i 1_{\{x_i \in R_j\}}$ and $\hat{p}_j = \frac{1}{n_j} \sum_i y_i 1_{\{x_i \in R_j\}}$.

We have shown that

$$\min_{f \in \mathcal{F}_{\Pi}} \widehat{\mathcal{R}}_n(f) = \frac{1}{n} \sum_{j=1}^d n_j \, h_{\ell}(\hat{p}_j)$$

Let \hat{f}_{Π} be the minimizer of $\widehat{\mathcal{R}}_n(f)$ in \mathcal{F}_{Π} , and likewise for \hat{f}_{Π_-} . Then the "decrease of impurity" due to the split is

$$\widehat{\mathcal{R}}_n(\hat{f}_{\Pi_-}) - \widehat{\mathcal{R}}_n(\hat{f}_{\Pi}) = \frac{n_{\cup}}{n} h_{\ell}(\hat{p}_{\cup}) - \left[\frac{n_{d-1}}{n} h_{\ell}(\hat{p}_{d-1}) + \frac{n_d}{n} h_{\ell}(\hat{p}_d) \right]$$

$$n_{\cup} = n_{d-1} + n_d$$
 and $\hat{p}_{\cup} = \frac{n_{d-1}\,\hat{p}_{d-1} + n_d\,\hat{p}_d}{n_{\cup}}$

Greedy decision tree learning algorithm

Given a training set $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ with $\mathbf{x}_i \in \mathbb{R}^p$ and $y_i \in \{0, 1\}$,

Algorithm 1 Decision tree building

```
1: Initialize R_1 a hyper-rectangle containing the data, d \leftarrow 1
 2: while stopping criterion not met do
 3:
             for i=1 to d, and k=1 to p, do
 4:
                   Let x_{i_1,k} \leq \ldots \leq x_{i_{n_i},k} be the sorted (x_{i,k})_{i:\mathbf{x}_i \in R_i}.
 5.
                   for s=1 to n_i-1 do
                        \theta \leftarrow \frac{1}{2}(x_{i_s,k} + x_{i_{s+1},k})
 6:
                        let R_{i,k,\theta} = R_i \cap \{\mathbf{x} | x_k \leq \theta\}, R_{i,k,\theta} = R_i \cap \{\mathbf{x} | x_k > \theta\}
 7:
                         \Delta H_{i,k,\theta} = n_i h_{\ell}(\hat{p}_i) - \left[ n_{i,k,\theta}^- h_{\ell}(\hat{p}_{i,k,\theta}^-) + n_{i,k,\theta}^+ h_{\ell}(\hat{p}_{i,k,\theta}^+) \right]
 8:
 9:
                   end for
             end for
10.
11:
             (j, k, \theta) = \operatorname{argmax}_{(j', k', \theta')} \Delta H_{j', k', \theta'}
             R_i \leftarrow R_{i,k,\theta,-}, \quad R_{d+1} \leftarrow R_{i,k,\theta,+}, \text{ and } d \leftarrow d+1
12.
13: end while
```

with
$$\begin{aligned} & z_{i,j} = 1_{\{\mathbf{x}_i \in R_j\}} \\ & n_j = \sum_i z_{i,j} \\ & \hat{p}_j = \frac{1}{n_j} \sum_i y_i z_{i,j} \\ & z_{i,j,k,\theta,-} = 1_{\{\mathbf{x}_i \in R_{j,k,\theta,-}\}} \\ & n_{j,k,\theta}^- = \sum_i z_{i,j,k,\theta,-} \\ & \hat{p}_{j,k,\theta}^- = \frac{\sum_i y_i z_{i,j,k,\theta,-}}{n_{j,k,\theta}^-} \\ & z_{i,j,k,\theta,+} = 1_{\{\mathbf{x}_i \in R_{j,k,\theta,+}\}} \\ & n_{j,k,\theta}^+ = \sum_i z_{i,j,k,\theta,+} \\ & \hat{p}_{j,k,\theta}^+ = \frac{\sum_i y_i z_{i,j,k,\theta,+}}{n_{j,k,\theta}^+} \end{aligned}$$

Greedy regression tree learning for the square loss

Given a training set $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ with $\mathbf{x}_i \in \mathbb{R}^p$ and $y_i \in \mathbb{R}$,

Algorithm 2 Regression tree building

```
1: Initialize R_1 a hyper-rectangle containing the data, d \leftarrow 1
 2: while stopping criterion not met do
 3:
             for i=1 to d, and k=1 to p, do
                   Let x_{i_1,k} \leq \ldots \leq x_{i_{n_i},k} be the sorted (x_{i,k})_{i:\mathbf{x}_i \in R_i}.
 4:
 5.
                   for s=1 to n_i-1 do
                        \theta \leftarrow \frac{1}{2}(x_{i_s,k} + x_{i_{s+1},k})
 6:
                        let R_{i,k,\theta} = R_i \cap \{\mathbf{x} | x_k < \theta\}, R_{i,k,\theta} = R_i \cap \{\mathbf{x} | x_k > \theta\}
 7:
                         \Delta H_{i,k,\theta} = n_i \hat{\sigma}_i^2 - \left[ n_{ik\theta}^- \hat{\sigma}_{ik\theta-}^2 + n_{ik\theta}^+ \hat{\sigma}_{ik\theta+}^2 \right]
 8:
 9:
                   end for
             end for
10:
             (j, k, \theta) = \operatorname{argmax}_{(i', k', \theta')} \Delta H_{i', k', \theta'}
11:
             R_i \leftarrow R_{i,k,\theta,-}, \quad R_{d+1} \leftarrow R_{i,k,\theta,+}, \text{ and } d \leftarrow d+1
12.
13: end while
```

with
$$z_{i,j} = 1_{\{\mathbf{x}_i \in R_j\}}$$

$$n_j = \sum_i z_{i,j}$$

$$\hat{\mu}_j = \frac{1}{n_j} \sum_i y_i z_{i,j}$$

$$\hat{\sigma}_j^2 = \frac{1}{n_j} \sum_i z_{i,j} (y_i - \hat{\mu}_j)^2$$

$$z_{ijk\theta}^- = 1_{\{\mathbf{x}_i \in R_{j,k,\theta,-}\}}$$

$$n_{jk\theta}^- = \sum_i z_{ijk\theta}^-$$

$$\hat{\mu}_{jk\theta-} = \frac{\sum_i y_i z_{ijk\theta}^-}{n_{jk\theta}^-}$$

$$\hat{\sigma}_{jk\theta-}^2 = \frac{\sum_i z_{ijk\theta}^- (y_i - \hat{\mu}_{jk\theta-})^2}{n_{jk\theta}^-}$$

$$n_{jk\theta}^+,\,\hat{\mu}_{jk\theta+},\,$$
 and $\hat{\sigma}_{jk\theta+}^2$

Impurity measures for multi-class classification

We consider a (one hot encoding) multinomial variable

$$Y \sim \mathsf{Multi} ig((p_1, \dots, p_K), 1 ig)$$

\mathcal{A}	$\ell(m{a},m{y})$	Impurity	Binary	Multiclass
\mathbb{R}^K	$\ oldsymbol{a}-oldsymbol{y}\ ^2$	Gini entropy	p(1-p)	$\sum_{k=1}^{K} p_k (1 - p_k)$
\triangle	$-\sum_{k=1}^{K} y_k \log a_k$	Shannon entropy	$-\log\left(p^p(1-p)^{1-p}\right)$	$-\sum_{k=1}^{K} p_k \log p_k$
\triangle	$1_{\{oldsymbol{a} eq oldsymbol{y}\}}$	Misclassification err.	$\min\big(p,(1-p)\big)$	$1 - \max_k p_k$

- the simplex : $\triangle = \{ a \in [0,1]^K \mid a_1 + \ldots + a_K = 1 \}$
- the discrete simplex : $\triangle = \triangle \cap \{0,1\}^K$

Tree Pruning

- One can stop splitting nodes when a minimal number of points per region is reached
- In addition, the tree is then pruned to minimize

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\mathbf{w}}(x_i), y_i) + \lambda d$$

 Pruning does not simply merge leaves in reverse order of appearance, because a poor split can be followed by a better split.

Weakest link pruning:

- Merge sibling leaf nodes that lead to the smallest possible increase of the empirical risk.
- Repeat this procedure iteratively
- Choose the best model by cross-validation.

Implementations and Criticisms

There are multiple variants of decision and regression trees. The algorithms presented correspond essentially to ${\rm CART}$ (Breiman et al., 1984). Other well known implementations include ${\rm C4.5}$ (Quinlan, 1993).

If a region R_0 is split into $\{R_1, R_2\}$ with R_j having n_j points and class 1 proportion \hat{p}_j , then for the Shannon entropy, the decrease in impurity

$$\Delta H = n_0 h_{\ell}(\hat{p}_0) - \left[n_1 h_{\ell}(\hat{p}_1) + n_2 h_{\ell}(\hat{p}_2) \right]$$

can be overfitted...

- But it does not take into account significance/estimation uncertainty which is large for small nodes. This leads to the selection of irrelevant variables, which partially addressed by pruning but not completely.
- Since there are more possible splits for continuous variables and variables which have large number of levels, there is a bias in favor of these variables.

Other decisions and regression tree learning algorithm have tried to address these issues: QUEST (Loh and Shih, 1997), CRUISE (Kim and Loh, 2001), GUIDE (Loh, 2002), and *Conditional Inference trees* (Hothorn et al., 2006).

Conditional Inference Trees (Hothorn et al., 2006)

A tree is constructed by recursive splits as before except the choice of the splits are based on proper conditional independence tests.

- At each leaf R_j a test of **independence** is performed between each variable X_k and Y (on the data in R_j) to test $H_0: X_k \perp\!\!\!\perp Y \mid X \in R_j$.
 - A split is done on the variable X_k with the most significant test score, provided independence is rejected by the test.
- ② Once the variable X_k chosen, the splitting threshold θ is chosen by performing again another independence test of $1_{\{X_k \leq \theta\}}$ and Y inside R_j to reject the hull hypothesis

$$H_0: 1_{\{X_k \le \theta\}} \perp \!\!\!\perp Y \mid X \in R_j,$$

and the value of θ with the most significant rejection is selected.

The CI trees are implemented in the R-packages party (Hothorn et al., 2010) and partykit (Hothorn and Zeileis, 2015). These are included in the caret package (Kuhn et al., 2008).

References I

- Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and regression trees. CRC press.
- Hothorn, T., Hornik, K., Strobl, C., and Zeileis, A. (2010). Party: A laboratory for recursive partytioning.
- Hothorn, T., Hornik, K., and Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical statistics, 15(3):651–674.
- Hothorn, T. and Zeileis, A. (2015). partykit: A modular toolkit for recursive partytioning in R. *The Journal of Machine Learning Research*, 16(1):3905–3909.
- Kim, H. and Loh, W.-Y. (2001). Classification trees with unbiased multiway splits. Journal of the American Statistical Association, 96(454):589–604.
- Kuhn, M. et al. (2008). Building predictive models in R using the caret package. *Journal of statistical software*, 28(5):1–26.
- Loh, W.-Y. (2002). Regression tress with unbiased variable selection and interaction detection. *Statistica sinica*, pages 361–386.
- Loh, W.-Y. and Shih, Y.-S. (1997). Split selection methods for classification trees. Statistica sinica, pages 815–840.
- Quinlan, J. R. (1993). C4. 5: Programs for machine learning.