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Decision tree
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Decision/regression trees principle

Is a local averaging method of the type histogram except that the partition
Π = {R1, . . . , Rd} is build from the data.

Tree predictors are of the form :

fw(x) =

d∑
j=1

wj 1{x∈Rj}

where the (hyper)-rectangular regions Rj are obtained by recursive partitioning of the
space based on splits that place a threshold on a single variable at a time.
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Entropy associated with a loss function

If ` is a loss function, we define the associated
entropy for constant predictors as H`(Y ) = infa∈A E[`(a, Y )].

Examples :

Regression. For `(a, y) = (a− y)2, H`(Y ) = infa∈R E[(a− Y )2]= Var(Y )

Binary Classification. For Y ∼ Ber(p),

if `(a, y) = (a− y)2, then H`(Y ) = Var(Y ) = p(1− p) is the Gini entropy

if `(a, y) = −
[
y log a+ (1− y) log(1− a)

]
, then we get the Shannon entropy

H`(Y ) = min
a∈[0,1]

−E[Y log a+ (1− Y ) log(1− a)] = −p log p− (1− p) log(1− p)

if `(a, y) = 1{a6=y} then H`(Y ) = mina∈{0,1} P(Y 6= a) = mina∈{0,1} a(1− p) + (1−a)p

so that H`(Y ) = min(p, (1− p)) is the (oracle) misclassification error

These entropies are called impurity measures because H`(Y )→ 0 when p→ 0 or p→ 1.
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Impurity measures for binary classification

hG(p) = p(1− p)
hS(p) = −p log p− (1− p) log(1− p)
h0-1(p) = min

(
p, (1− p)

)

Gini entropy
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Empirical impurity measures

The same impurity measures can be defined in an empirical setting

For least square regression, we have σ̂2 = mina
1
n

∑
i(yi − a)2

For binary classification, p̂ = 1
n

∑
i yi.

We can define the Gini, Shannon and 0-1 entropies as :

hG(p̂) = p̂(1− p̂) = min
a

1
n

∑
i(yi − a)2

hS(p̂) = −p̂ log p̂− (1− p̂) log(1− p̂) = min
a

1
n

∑
iyi log a+ (1− yi) log(1− a)

h0-1(p̂) = min
(
p̂, (1− p̂)

)
= min

a

1
n

∑
i1{yi 6=a}

We denote generically

h`(p̂) = min
a

1
n

∑
i `(yi, a) for h` ∈

{
hG, hS , h0-1

}
.
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ERM on histograms in terms of the impurity measures

Let

Π = {R1, . . . , Rd} and

FΠ =
{
fw | fw(x) =

∑d
j=1wj 1{x∈Rj}

}
the histogram functions on Π

∀fw ∈ FΠ, R̂n(fw) =
1

n

d∑
j=1

∑
i:xi∈Rj

`(wj , yi)

min
f∈FΠ

R̂n(f) =
1

n

d∑
j=1

min
wj

∑
i:xi∈Rj

`(wj , yi) =
1

n

d∑
j=1

nj h`(p̂j)

with nj =
∑

i 1{xi∈Rj} and p̂j = 1
nj

∑
i yi1{xi∈Rj}.
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Impurity decrease via a split

let Π = {R1, . . . , Rd−2, Rd−1, Rd}
and Π− = {R1, . . . , Rd−2, R∪} with R∪ = Rd−1 ∪Rd

→ so that Π is obtained from Π− by splitting R∪ into Rd−1 and Rd
let FΠ =

{
fw | fw(x) =

∑d
j=1wj 1{x∈Rj}

}
as before, and FΠ− similarly.

let nj =
∑

i 1{xi∈Rj} and p̂j = 1
nj

∑
i yi1{xi∈Rj}.

We have shown that
min
f∈FΠ

R̂n(f) =
1

n

d∑
j=1

nj h`(p̂j)

Let f̂Π be the minimizer of R̂n(f) in FΠ, and likewise for f̂Π− . Then the “decrease of
impurity” due to the split is

R̂n(f̂Π−)− R̂n(f̂Π) =
n∪
n
h`(p̂∪)−

[nd−1

n
h`(p̂d−1) +

nd
n
h`(p̂d)

]
with

n∪ = nd−1 + nd and p̂∪ =
nd−1 p̂d−1 + nd p̂d

n∪
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Greedy decision tree learning algorithm
Given a training set

{
(x1, y1), . . . , (xn, yn)

}
with xi ∈ Rp and yi ∈ {0, 1},

Algorithm 1 Decision tree building
1: Initialize R1 a hyper-rectangle containing the data, d← 1
2: while stopping criterion not met do
3: for j = 1 to d, and k = 1 to p, do
4: Let xi1,k ≤ . . . ≤ xinj ,k be the sorted (xi,k)i:xi∈Rj .

5: for s = 1 to nj − 1 do
6: θ ← 1

2

(
xis,k + xis+1,k

)
7: let Rj,k,θ,−=Rj∩{x|xk≤θ}, Rj,k,θ,+ = Rj∩{x|xk>θ}
8: ∆Hj,k,θ = njh`(p̂j)−

[
n−j,k,θ h`(p̂

−
j,k,θ) + n+j,k,θ h`(p̂

+
j,k,θ)

]
9: end for

10: end for
11: (j, k, θ) = argmax(j′,k′,θ′)∆Hj′,k′,θ′

12: Rj ← Rj,k,θ,−, Rd+1 ← Rj,k,θ,+, and d← d+ 1
13: end while

with
zi,j = 1{xi∈Rj}

nj =
∑
i zi,j

p̂j = 1
nj

∑
i yi zi,j

zi,j,k,θ,− = 1{xi∈Rj,k,θ,−}

n−j,k,θ =
∑
i zi,j,k,θ,−

p̂−j,k,θ =
∑
i yi zi,j,k,θ,−

n−j,k,θ

zi,j,k,θ,+ = 1{xi∈Rj,k,θ,+}

n+j,k,θ =
∑
i zi,j,k,θ,+

p̂+j,k,θ =
∑
i yi zi,j,k,θ,+

n+
j,k,θ
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Greedy regression tree learning for the square loss
Given a training set

{
(x1, y1), . . . , (xn, yn)

}
with xi ∈ Rp and yi ∈ R,

Algorithm 2 Regression tree building
1: Initialize R1 a hyper-rectangle containing the data, d← 1
2: while stopping criterion not met do
3: for j = 1 to d, and k = 1 to p, do
4: Let xi1,k ≤ . . . ≤ xinj ,k be the sorted (xi,k)i:xi∈Rj .

5: for s = 1 to nj − 1 do
6: θ ← 1

2

(
xis,k + xis+1,k

)
7: let Rj,k,θ,−=Rj∩{x|xk≤θ}, Rj,k,θ,+ = Rj∩{x|xk>θ}
8: ∆Hj,k,θ = nj σ̂

2
j −

[
n−jkθ σ̂

2
jkθ− + n+jkθ σ̂

2
jkθ+

]
9: end for

10: end for
11: (j, k, θ) = argmax(j′,k′,θ′)∆Hj′,k′,θ′

12: Rj ← Rj,k,θ,−, Rd+1 ← Rj,k,θ,+, and d← d+ 1
13: end while

with
zi,j = 1{xi∈Rj}

nj =
∑
i zi,j

µ̂j = 1
nj

∑
i yi zi,j

σ̂2
j = 1

nj

∑
i zi,j (yi − µ̂j)2

z−ijkθ = 1{xi∈Rj,k,θ,−}

n−jkθ =
∑
i z
−
ijkθ

µ̂jkθ− =
∑
i yi z

−
ijkθ

n−jkθ

σ̂2
jkθ− =

∑
i z
−
ijkθ(yi−µ̂jkθ−)

2

n−jkθ

And similarly for
n+jkθ, µ̂jkθ+, and σ̂2

jkθ+
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Impurity measures for multi-class classification

We consider a (one hot encoding) multinomial variable

Y ∼ Multi
(
(p1, . . . , pK), 1

)
A `(a,y) Impurity Binary Multiclass

RK ‖a− y‖2 Gini entropy p(1− p)
∑K

k=1 pk(1− pk)

4 −
∑K

k=1 yk log ak Shannon entropy − log
(
p p(1− p)1−p) −

∑K
k=1 pk log pk

4· 1{a6=y} Misclassification err. min
(
p, (1− p)

)
1−maxk pk

with

the simplex : 4 = {a ∈ [0, 1]K | a1 + . . .+ aK = 1}
the discrete simplex : 4· = 4∩ {0, 1}K
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Tree Pruning

One can stop splitting nodes when a minimal number of points
per region is reached

In addition, the tree is then pruned to minimize

min
w

1
n

n∑
i=1

`(fw(xi), yi) + λd

Pruning does not simply merge leaves in reverse order of appearance, because a poor
split can be followed by a better split.

Weakest link pruning :

Merge sibling leaf nodes that lead to the smallest possible increase of the empirical risk.

Repeat this procedure iteratively

Choose the best model by cross-validation.

Math-412 Decision and Regression trees 12/15



Implementations and Criticisms
There are multiple variants of decision and regression trees. The algorithms

presented correspond essentially to cart (Breiman et al., 1984). Other well
known implementations include c4.5 (Quinlan, 1993).

If a region R0 is split into {R1, R2} with Rj having nj points and class 1 proportion p̂j , then for the
Shannon entropy, the decrease in impurity

∆H = n0 h`(p̂0)−
[
n1h`(p̂1) + n2h`(p̂2)

]
can be overfitted...

But it does not take into account significance/estimation uncertainty which is large for small
nodes. This leads to the selection of irrelevant variables, which partially addressed by pruning
but not completely.

Since there are more possible splits for continuous variables and variables which have large
number of levels, there is a bias in favor of these variables.

Other decisions and regression tree learning algorithm have tried to address these issues : quest

(Loh and Shih, 1997), cruise (Kim and Loh, 2001), guide (Loh, 2002), and Conditional Inference

trees (Hothorn et al., 2006).
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Conditional Inference Trees (Hothorn et al., 2006)

A tree is constructed by recursive splits as before except the choice of
the splits are based on proper conditional independence tests.

1 At each leaf Rj a test of independence is performed between each variable Xk and Y
(on the data in Rj) to test H0 : Xk⊥⊥Y | X ∈ Rj .
A split is done on the variable Xk with the most significant test score, provided
independence is rejected by the test.

2 Once the variable Xk chosen, the splitting threshold θ is chosen by performing again
another independence test of 1{Xk≤θ} and Y inside Rj to reject the hull hypothesis

H0 : 1{Xk≤θ}⊥⊥Y | X ∈ Rj ,

and the value of θ with the most significant rejection is selected.

The CI trees are implemented in the R-packages party (Hothorn et al., 2010) and partykit

(Hothorn and Zeileis, 2015). These are included in the caret package (Kuhn et al., 2008).
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