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Decision /regression trees principle

@ Is a local averaging method of the type histogram except that the partition
II ={Ry,..., Ry} is build from the data.

@ Tree predictors are of the form :
d
Jw(x) = ij 1{xERj}
j=1

where the (hyper)-rectangular regions R; are obtained by recursive partitioning of the
space based on splits that place a threshold on a single variable at a time.
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Entropy associated with a loss function

If £ is a loss function, we define the associated
entropy for constant predictors as Hy(Y) = inf,c 4 E[¢(a,Y)].

Examples :
Regression. For /(a,y) = (a —y)?, Hy(Y) = infuer E[(a — Y)?]= Var(Y)
Binary Classification. For Y ~ Ber(p),

o if /(a,y) = (a —y)?, then Hy(Y) = Var(Y) = p(1 — p) is the Gini entropy

o if {(a,y) = —[yloga+ (1 — y)log(1l — a)], then we get the Shannon entropy

Hy(Y) = m[ionl] —E[Yloga+ (1 —Y)log(1 —a)] = —plogp — (1 — p)log(1 — p)
ac|0,

o if {(a.y) = 1{uz,) then Hy(Y) = minge (013 P(Y # a) = mingego13 a(1—p)+(1—a)p
so that Hy(Y) = min(p, (1 — p)) is the (oracle) misclassification error

These entropies are called impurity measures because Hy(Y) — 0 when p — 0 or p — 1.
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Impurity measures for binary classification
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Empirical impurity measures

The same impurity measures can be defined in an empirical setting

2 — min, % (i — a)?

For least square regression, we have &

For binary classification, p = % > i Yie
We can define the Gini, Shannon and 0-1 entropies as :

he(p) = p(1 — ) = min L Ti(y; — a)?
hs(p) = —plogp — (1 —p)log(1 — p) = min 3 37;y;loga+ (1 — ;) log(1 — a)
ho-1(p) = min (p, (1 —p)) = min L3 Lyita)

We denote generically

he(p) = main%ZiE(yi,a) for hy e {hg,hg, ho_l}.
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ERM on histograms in terms of the impurity measures

Let
o II={Ry,...,Ry} and
o Fii = {fuw| fw(z)= E?:l wj 1{xeRj}} the histogram functions on II

d
1
j=lix;€ER;
1 d
m};a’R, Zmln Z Uwj, yi) zﬁznjhf(ﬁj)
fe€Fn 1w, €R; Jj=1

with nj =3 Liz,er;} and pj = % i Yil{zer;y-
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Impurity decrease via a split

o letIl = {Rl,...,Rd_g,Rd,hRd}
e and II_ ={Ry,...,R4_2, Ry} with R, = Ry_1 U Ry

— so that II is obtained from II_ by splitting Ry into Ry and Ry

o let Fii = { fuw | fw(z) = Z?Zl wj 1{1;63].}} as before, and Fyy_ similarly.

° Iet n] = Z'L 1{Ii€Rj} and ﬁ] = L Z y’L {a)»LERJ}
We have shown that

R ho(
Jain R ) = Z”ﬂ &

Let fn be the minimizer of ﬁn(f) in Fi1, and likewise for fnf. Then the “decrease of
impurity” due to the split is

with Nd—1Dd—1 + Nd Da

ny

ny=n4g_1+ng and py=
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Greedy decision tree learning algorithm

Given a training set {(xl,yl), R (xn,yn)} with x; € R? and y; € {0,1},

Algorithm 1 Decision tree building

1: Initialize Ry a hyper-rectangle containing the data, d + 1
2: while stopping criterion not met do

3 for j=1tod,and k=1 to p, do

4 Let w;, < ... <, 1 be the sorted (i )ix;eR,-

5: fors:lton]—ldo

6 0« %(xis’k —l—xis“,k)

7 let Rj1.0,— ZRjﬁ{X x <0}, Rjro+ = Rjﬂ{x\mk >0}
8
9

AH;j ko = njhe(ps) = [0 4.0 he(D 40) + 15 g he (D] 1 0)]

end for
10: end for
11: (Js k,0) = argmax ;s s o AHjr jr o0
12: Rj — ijk-’e_’_, Rii1 Rj,k:,0,+7 and d+ d+1

13: end while
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with
Zij = Lxier;}
ng =3, %j
= ﬁjzlyzz”
Zijk0,— = L{xi€R; 0}
ko = =D, %ijk0,—
g = Ditisbies
Zm‘ke+ = 1{xleR,k 0.4}
Jke =D Zijk0.+
Z Yi Zi,j,k,0,+

p = T
J:k0 k.0



Greedy regression tree learning for the square loss
Given a training set {(xl,yl), R (xn,yn)} with x; € RP and y; € R,

Algorithm 2 Regression tree building

1: Initialize Ry a hyper-rectangle containing the data, d + 1
2: while stopping criterion not met do

3 for j=1tod,and k=1 to p, do

4 Let 2, 1 < ... < iy, k be the sorted (7 x)ix,er,-

5: for s=1ton; —1do

6: 0 < %(xis’k —l—xis“,k)

7 let Rj1.0,— ZRjﬁ{X x <0}, Rjro+ = Rjﬂ{x\mk >0}
8
9

with

Zij = LxieR;}
ng =3, %,

B = 5 203 ¥i %
~2

67 = -3 25 (yi — 1)?

J

Zijko — 1{X1€Rj,k,9,7}

Niko = 2 %ijko
AHjpp =njo3 — [”j_ke Ging T ”;rke 6?k0+] S 2 YiZike
end for Hiko— = ne
10: end for o 2 e (Wi ke )?
11: (j, k,0) = argmax ;s s gy AHjs pr o1 Tjko— = oo
12: Rj <+ Rjro—, Riy1+ Rjpo+, and d<d+1 And similarly for

13: end while
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Impurity measures for multi-class classification

We consider a (one hot encoding) multinomial variable

Y ~ Multi((pl, ey DK, 1)

A la,y) Impurity Binary Multiclass
RE la —y||? Gini entropy p(1—p) Zszl pr(1 — pk)
A —Zszl Yk log ag Shannon entropy —log (pp(l — p)l_p) — Zszl i log pi
A Liazy} Misclassification err. min (p, (1- p)) 1 — maxyg, p
with

o the simplex : A ={a € [0,1]% | a1 +... +ax =1}
o the discrete simplex : A= AN {0, 1}%
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Tree Pruning

@ One can stop splitting nodes when a minimal number of points
per region is reached

@ In addition, the tree is then pruned to minimize
n
min 1Y (fulwi), yi) + M
i=1

@ Pruning does not simply merge leaves in reverse order of appearance, because a poor
split can be followed by a better split.

Weakest link pruning :
@ Merge sibling leaf nodes that lead to the smallest possible increase of the empirical risk.
@ Repeat this procedure iteratively

@ Choose the best model by cross-validation.
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Implementations and Criticisms

There are multiple variants of decision and regression trees. The algorithms
presented correspond essentially to CART (Breiman et al., 1984). Other well

known implementations include c¢4.5 (Quinlan, 1993).
If a region Ry is split into {R1, Rz} with R; having n; points and class 1 proportion p;, then for the
Shannon entropy, the decrease in impurity

AH =nghe(po) — [nlhg(fn) + TLQ}LE(Z/}Q)}
can be overfitted...

@ But it does not take into account significance/estimation uncertainty which is large for small
nodes. This leads to the selection of irrelevant variables, which partially addressed by pruning
but not completely.

@ Since there are more possible splits for continuous variables and variables which have large
number of levels, there is a bias in favor of these variables.

Other decisions and regression tree learning algorithm have tried to address these issues : QUEST
(Loh and Shih, 1997), crUISE (Kim and Loh, 2001), GUIDE (Loh, 2002), and Conditional Inference
trees (Hothorn et al., 2006).
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Conditional Inference Trees (Hothorn et al., 2006)

A tree is constructed by recursive splits as before except the choice of
the splits are based on proper conditional independence tests.

O At each leaf R; a test of independence is performed between each variable X}, and YV
(on the datain Rj) totest Hp: X, 1LY | X € R;.

A split is done on the variable X} with the most significant test score, provided
independence is rejected by the test.

@ Once the variable X} chosen, the splitting threshold 6 is chosen by performing again
another independence test of 11y, <p} and Y inside R; to reject the hull hypothesis

Hy : 1{Xk§9}J-|-Y | X e Rj,

and the value of 0 with the most significant rejection is selected.

The Cl trees are implemented in the R-packages party (Hothorn et al., 2010) and partykit
(Hothorn and Zeileis, 2015). These are included in the caret package (Kuhn et al., 2008).
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